## 1 Fig. 7 shows the curve

$$y = 2x - x \ln x$$
, where  $x > 0$ .

The curve crosses the *x*-axis at A, and has a turning point at B. The point C on the curve has *x*-coordinate 1. Lines CD and BE are drawn parallel to the *y*-axis.



**Fig. 7** 

(i) Find the *x*-coordinate of A, giving your answer in terms of e. [2]

(ii) Find the exact coordinates of B. [6]

(iii) Show that the tangents at A and C are perpendicular to each other. [3]

(iv) Using integration by parts, show that

$$\int x \ln x \, \mathrm{d}x = \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + c \,.$$

Hence find the exact area of the region enclosed by the curve, the *x*-axis and the lines CD and BE. [7]

2 Show that 
$$\int_{0}^{\frac{1}{6}\pi} x \sin 2x \, dx = \frac{3\sqrt{3}}{24}$$
. [6]

Fig. 8 shows part of the curve  $y = x \sin 3x$ . It crosses the x-axis at P. The point on the curve with 3 x-coordinate  $\frac{1}{6}\pi$  is Q.





| (i)           | Find the x-coordinate of P.                                                           | [3] |
|---------------|---------------------------------------------------------------------------------------|-----|
| (ii)<br>(iii) | Show that Q lies on the line $y = x$ .                                                | [1] |
|               | Differentiate $x \sin 3x$ . Hence prove that the line $y = x$ touches the curve at Q. | [6] |

- (iv) Show that the area of the region bounded by the curve and the line y = x is  $\frac{1}{72}(\pi^2 8)$ . [7]
- (i) Differentiate  $x \cos 2x$  with respect to x. [3] 4 [4]
  - (ii) Integrate  $x \cos 2x$  with respect to x.

PhysicsAndMathsTutor.com