1 Fig. 7 shows the curve

$$
y=2 x-x \ln x \text {, where } x>0 .
$$

The curve crosses the x-axis at A , and has a turning point at B . The point C on the curve has x-coordinate 1. Lines CD and BE are drawn parallel to the y-axis.

Not to scale

Fig. 7
(i) Find the x-coordinate of A, giving your answer in terms of e .
(ii) Find the exact coordinates of B.
(iii) Show that the tangents at A and C are perpendicular to each other.
(iv) Using integration by parts, show that

$$
\int x \ln x \mathrm{~d} x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c .
$$

Hence find the exact area of the region enclosed by the curve, the x-axis and the lines CD and BE.

2 Show that $\int_{0}^{\frac{1}{6} \pi} x \sin 2 x \mathrm{~d} x=\frac{3 \sqrt{3} \quad \pi}{24}$.

3 Fig. 8 shows part of the curve $y=x \sin 3 x$. It crosses the x-axis at P . The point on the curve with x-coordinate $\frac{1}{6} \pi$ is Q.

Fig. 8
(i) Find the x-coordinate of P.
(ii) Show that Q lies on the line $y=x$.
(iii) Differentiate $x \sin 3 x$. Hence prove that the line $y=x$ touches the curve at Q .
(iv) Show that the area of the region bounded by the curve and the line $y=x$ is $\frac{1}{72}\left(\pi^{2}-8\right)$.
(i) Differentiate $x \cos 2 x$ with respect to x.
(ii) Integrate $x \cos 2 x$ with respect to x.

